Water and Biofuel Research in SA

Centre for Water Resources Research University of KwaZulu-Natal, Pietermaritzburg

Richard Kunz

Bioenergy Cluster Committee Workshop

20th February 2013

Mandatory Blending Rates

• Minimum mandatory blending rates:

- Biodiesel 5 % v/v: 0.05×9.3 billion L (2010) = 465 million L an⁻¹
- Bioethanol 2-10 % v/v: 0.02 × 11.8 billion L (2010) = 240 million L an⁻¹
 0.10 × 11.8 billion L (2010) = 1200 million L an⁻¹
- Should research focus on bioethanol feedstocks?
- Proposed processing plants:
 - Cradock ethanol: 90 million L an⁻¹ from 230,000 t grain sorghum
 or 1,200,000 t sugarbeet
 - Bothaville ethanol: 150 million L an⁻¹ from 400,000 t grain sorghum or 375,000 t maize
 - Coega IDZ biodiesel: 288 million L an⁻¹ from 1,300,000 t soybean

Source: DoE (2012)

Is Land Availability an Issue?

• 220,000 ha required to produce 630,000 tons of grain sorghum

- Land area required to produce 1 million litres of biofuel
- More land area required to produce biodiesel than ethanol

Сгор	Extraction yield (litres per ton)	Crop mass (tons)	Crop yield (tons per ha)	Harvest area (hectares)
Sugarcane	81.4 ¹	12,285	64.79 ²	191
Maize	402.3 ¹	2,486	4.924	506
Sorghum	370.0 ³	2,703	2.94 ⁴	919
Sunflower	398.0 ¹	2,513	1.55 ⁴	1,625
Soybean	171.4 ¹	5,834	1.60 ⁴	3,646
Data sources:	¹ DME (2006)	² SASA (2009)	³ BFAP (2008)	⁴ BFAP (2009)

Is Land Availability an Issue?

• Sufficient land exists to produce biofuel feedstocks in SA

- 3.0 million ha of under-utilised land in the former homelands (DME, 2007)
- Expand agriculture in KZN by 1 million ha by 2030 (PGDP, 2012)
 - 22 % of arable Ngonyama Trust land (former KwaZulu) is idle (Lyne, 1989)

Province	Arable land in South Africa (ha)				
Province	Potential	Developing	Commercial		
Free State	4,221,423	34,900	4,186,523		
North West	3,360,459	951,975	2,408,484		
Western Cape	2,454,788	0	2,454,788		
Eastern Cape	1,172,901	529,400	643,501		
Limpopo	1,700,442	530,700	1,169,742		
Mpumalanga	1,734,896	137,898	1,596,998		
KwaZulu-Natal	1,199,675	360,700	838,975		
Gauteng	438,623	0	438,623		
Northern Cape	454,465	0	454,465		
Total	16,737,672	2,545,573	14,192,099		

Source: DAFF (2012)

Is Water Availability an Issue?

DWA's stance on feedstock irrigation:

- DWA promotes use of unproductive land under dryland conditions
- DWA does not support irrigation of biofuel feedstocks
 - Irrigation water charged at industrial rate, not subsidised agricultural rate

- Specific questions that DWA need addressing:
 - Water use of processing plants?
 - Water use impacts of communal land farming?
 - Within 80 km radius of proposed processing plant
 - Which feedstocks should be declared a SFRA?

Is Water Availability an Issue?

Water used to grow the feedstock > water used to produce the biofuel
Water use during growth stage is the biggest unknown

MozPEL sugarcane-to-ethanol project at Dombe, Mozambique

•	Offices and houses:	0.65 ML d ⁻¹			
•	Processing plant:	3.24 ML d ⁻¹	Source: CEPLAGA (2009)		
•	Irrigation requirement:	449 ML d ⁻¹ (20,000 ha @ 820	mm per annum)		

IDC grain sorghum-to-ethanol project at Cradock, Eastern Cape

- Processing plant: 4.44 ML d⁻¹
 - DRDLR "forfeited" 120 ha of land (@ 1,350 mm of irrigation)
- Irrigation requirement: ? ML d⁻¹
 - 8,000 ha of farmland purchased to date (require additional 1,000 ha)
 - 70 % of the sugarbeet lands will be flood irrigated
 - Canals are 240 km in length (25 % conveyance losses)
 - Evaporative demand ranges from 1,100 to 1,350 mm

Source: Maclachlan (2012)

Water use of Biofuel Production

National Biofuels Industrial Strategy (DME, 2007)
 2006 Feasibility Study urged government to assess impact of

biofuel production on water quantity and water quality

• Two WRC-funded projects on water use of biofuel feedstocks

- Mapping areas climatically suited to feedstock growth
- Assessment of feedstock water use and yield
- Mapping and modelling framework overview

- Other bioenergy research initiatives
 - DST's Bioenergy Atlas

Water Research Commission

- Two biofuel projects funded by the WRC:
 - Project K4/1772
 - "Scoping study on water use of crops/trees for biofuels in South Africa"
 - Reported published in November 2009
 - WRC Report No. 1772/1/09 (ISBN 978-1-77005-884-2)
 - High uncertainties exist for emerging crops, in particular:
 - Sweet Sorghum
 - Sugarbeet
 - Feedstocks that may use more water than natural vegetation:
 - Sugarcane
 - Sweet Sorghum

Project K5/1874

- "Water use of cropping systems adapted to bio-climatic regions in South Africa and suitable for biofuel production"
- For more detail, refer to pages 198-199 of WRC Knowledge Review 2011/12
 - http://www.wrc.org.za/Pages/KH_KnowledgeReviews.aspx?dt=8&ms=59

Project Background

Funding

Water Research Commission (K5/1874)

Contractor

Centre for Water Resources Research (CWRR, UKZN)

Title

Water use of cropping systems adapted to bio-climatic regions in South Africa and suitable for biofuel production

- Length
- Project leader
- Principal Researcher Mr Richard Kunz
- Budget

April 2009 - Mar 2015 (6 year) Prof Graham Jewitt R 7.4 million

The Project Team

• UKZN

- Prof Graham Jewitt (Project Leader)
- Richard Kunz (Principal Researcher)
- Prof Colin Everson (Crop water use)
- Dr Michael Mengistu (Crop water use)
- Prof Mark Laing (ACCI)
- Mr Ian Doidge (ACCI)

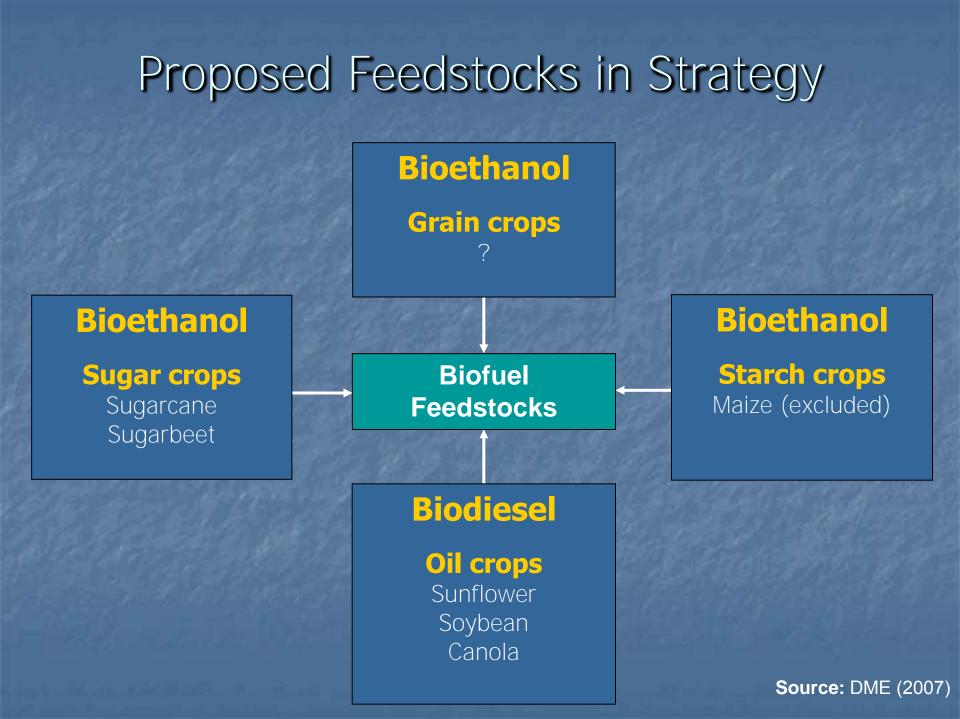
• UP

- Prof Elsa du Toit (Moringa)
- Prof Martin Steyn (Crops)
- CSIR
 - Dr Mark Gush (Jatropha)
 - Vivek Naiken (Field Technician)

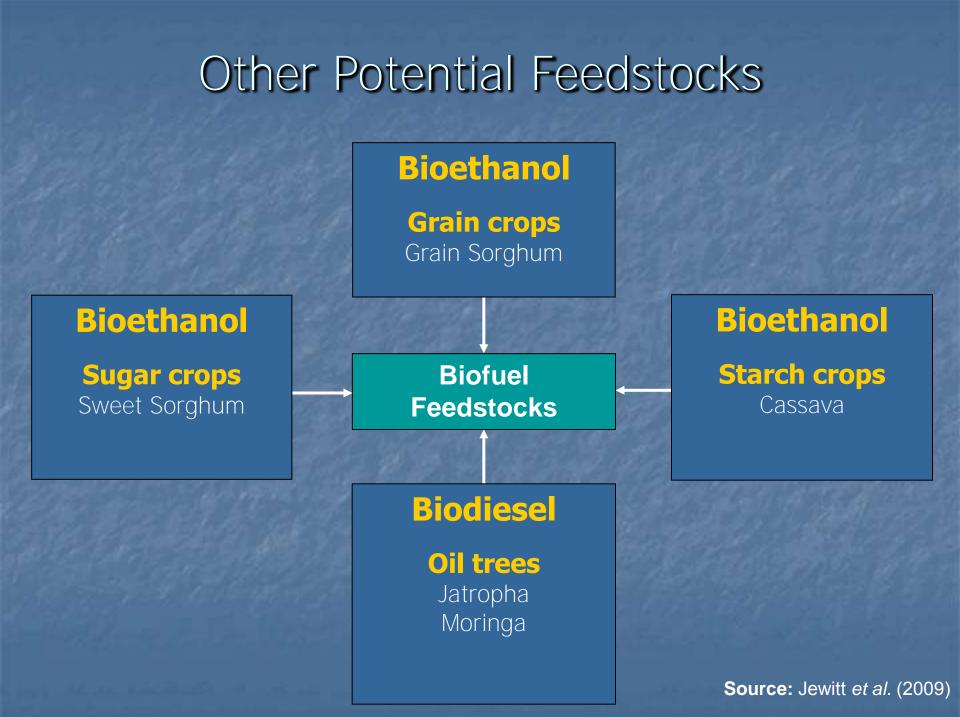
The Reference Group

- WRC Manager
 Dr Gerhard Backeberg
- Reference Group
 - Mr AT van Coller (DAFF)
 - Ms N Fourie (DWA)
 - Mr X Hadabe (DWA)
 - Prof A Brent (Stellenbosch University)
 - Mr P van Heerden (PICWAT)
 - Mr D Versfeld (Dirk Versfeld cc)
 - Dr A Singels (SASRI)
 - Mr A Meyer (SASOL New Energy Group)
 - Dr T Mali (SANEDI)
 - Mr S Xosa (DST)
 - Mr K Zihlangu (DoE)

Project's General Objective

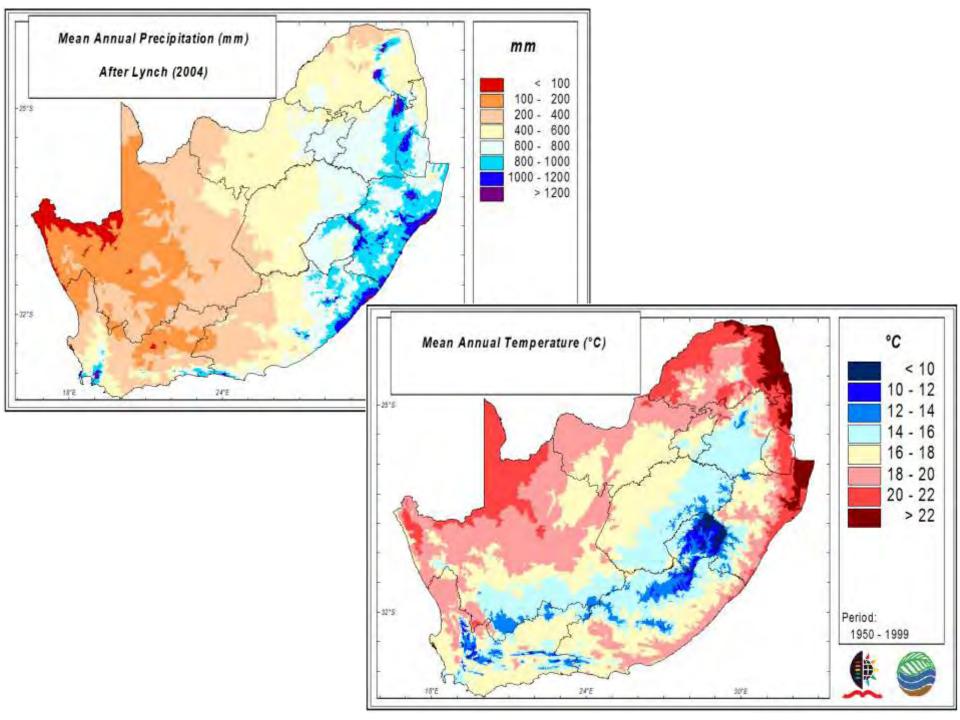

- To determine the water use of:
 - Potential biofuel feedstocks
 - Crops (annual)
 - Trees (perennial)
- for biofuel production
 - Bioethanol
 - Biodiesel

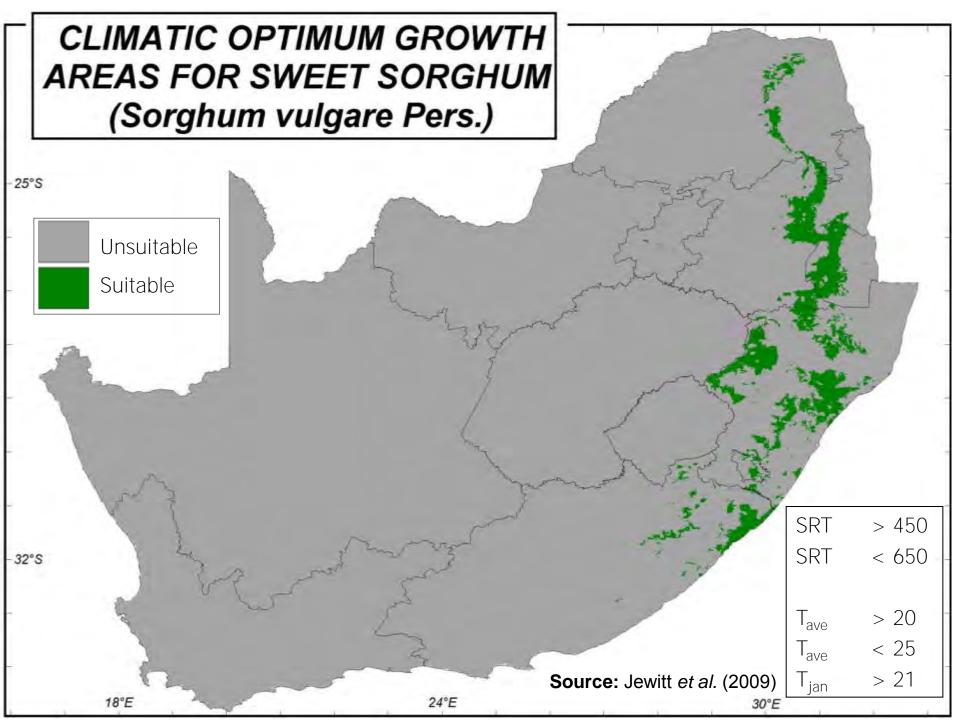
- in selected bio-climatic regions of South Africa
 - High potential (i.e. optimal)
 - Low potential (i.e. sub-optimal)

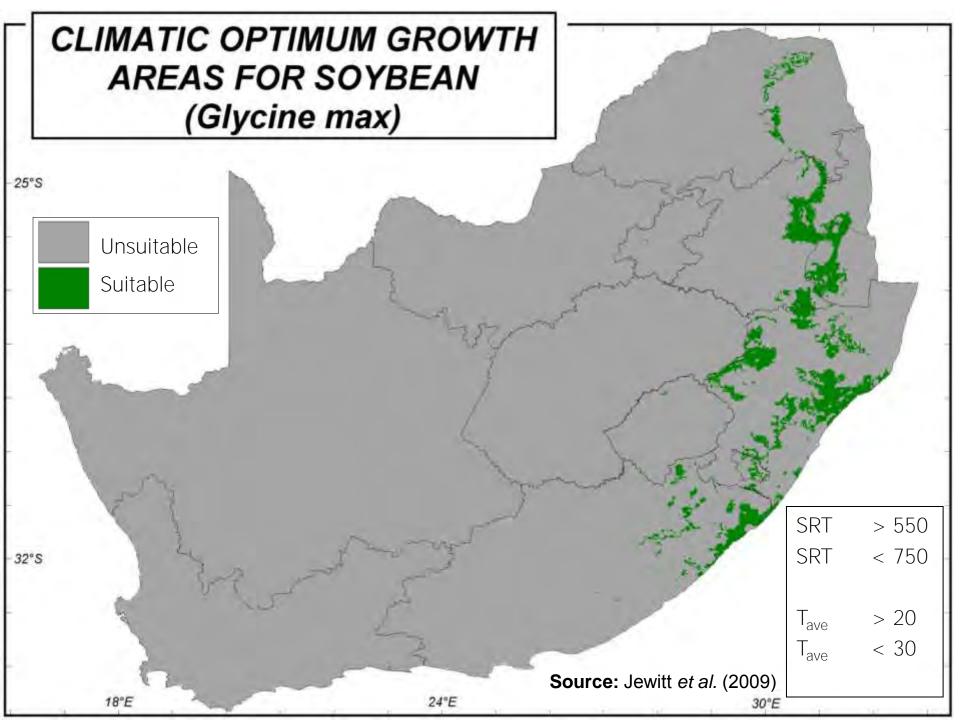

Aims and Objectives

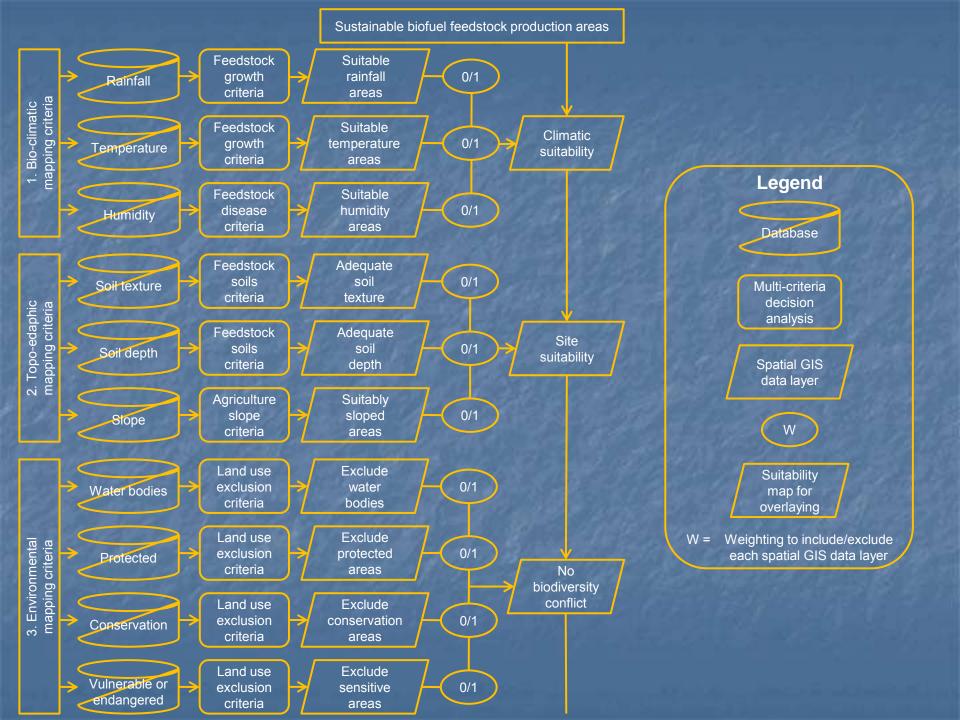
Identify suitable feedstocks for biofuel production in SA
Literature review & workshop identified potential feedstocks

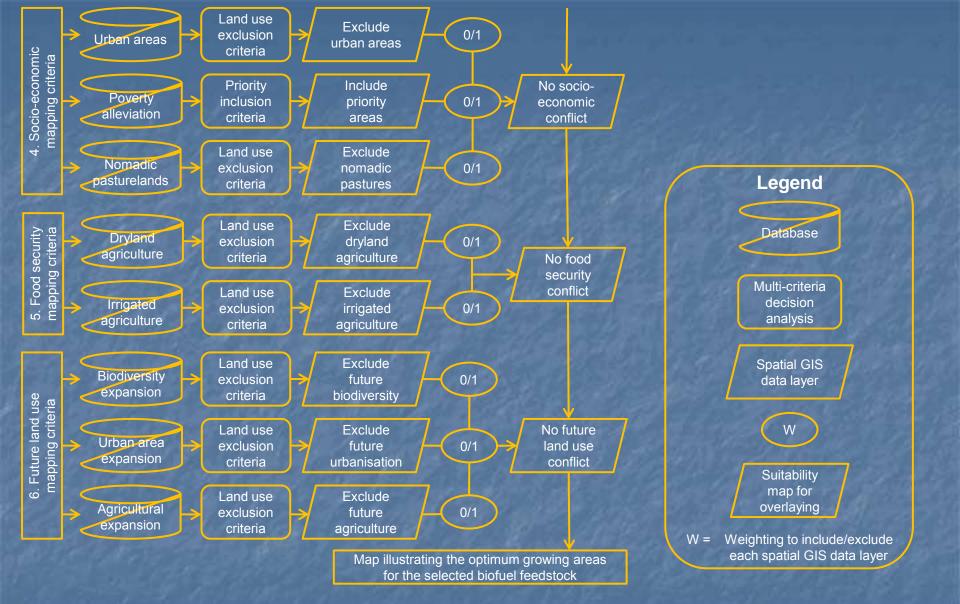
- Map areas optimally suited to biofuel feedstock production
 - GIS-based study to apply optimum growth criteria to spatial data sets
- Determine the available knowledge on water use of feedstocks
 - Literature review and workshop
- Measure the water use and yield of potential feedstocks
 - Field trials conducted at Ukulinga (UKZN) and Hatfield (UP)
- Estimate the water use and yield of specific feedstocks
 - Simulation modelling using hydrological & crop yield models


Aims and Objectives


Identify suitable feedstocks for biofuel production in SA
Literature review & workshop identified potential feedstocks


- Map areas optimally suited to biofuel feedstock production
 - GIS-based study to apply optimum growth criteria to spatial data sets
- Determine the available knowledge on water use of feedstocks
 - Literature review and workshop
- Measure the water use and yield of potential feedstocks
 - Field trials conducted at Ukulinga (UKZN) and Hatfield (UP)
- Estimate the water use and yield of specific feedstocks
 - Simulation modelling using hydrological & crop yield models


Climatic Thresholds for Growth


Crops	MAP (mm)	SRT (mm)	MAT (°C)	T _{ave} (°C)	T _{min} (°C)	T _{max} (°C)	Plant date	Growth days
Canola	500 - 1000				> 5	< 25	1 st Jun	140
Cassava	> 1000		20 – 29	E Marsha	C. C. C.	140	262/2	
Jatropha	500 - 1500		11 – 28	and the	Frost free	areas		
Sorghum		450 - 650		20 - 25 (T _{jan} > 21)			1 st Nov	115
Soybean	and the second	550 - 700	Por la	20 - 30			1 st Nov	150
Sugarbeet	550 - 750		15 - 25		> -1	5.6	1 st Aug	200
Sugarcane	850 - 1500		> 18		T _{jun} > 5 T _{jul} > 5		3012	
Sunflower		400 - 600		18 - 25 (T _{jan} > 19)			1 st Dec	125

Mapping of Suitable Production Areas

Aims and Objectives

Identify suitable feedstocks for biofuel production in SA
Literature review & workshop identified potential feedstocks

- Map areas optimally suited to biofuel feedstock production
 - GIS-based study to apply optimum growth criteria to spatial data sets
- Determine the available knowledge on water use of feedstocks
 - Literature review and workshop
- Measure the water use and yield of potential feedstocks
 - Field trials conducted at Ukulinga (UKZN) and Hatfield (UP)
- Estimate the water use and yield of specific feedstocks
 - Simulation modelling using hydrological & crop yield models

Location of Ukulinga Trials

Location of Ukulinga Trials

Measuring Feedstock Water Use

Surface Layer Scintillometry (SLS)

Measuring Feedstock Water Use

Sweet Sorghum (Ukulinga)

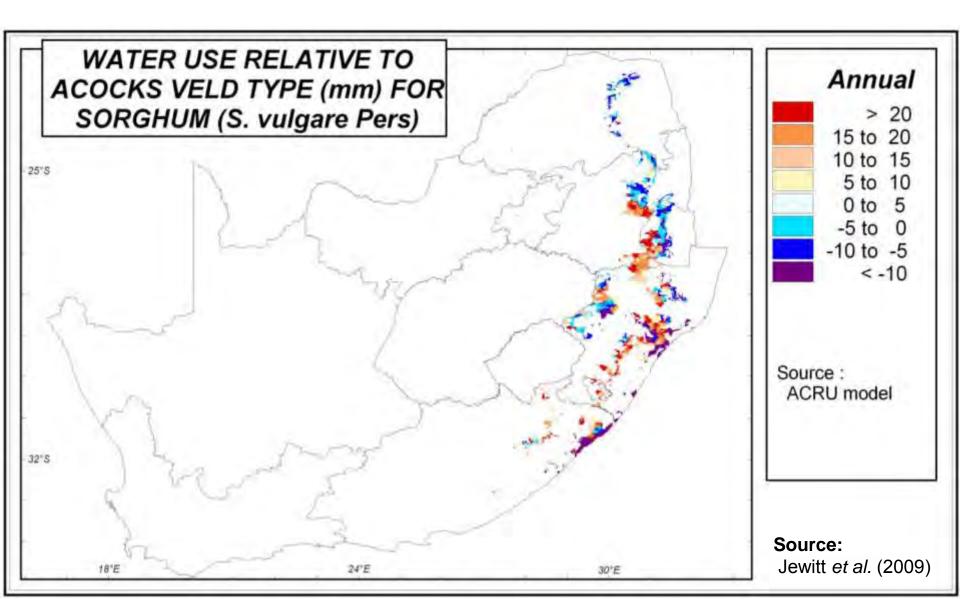
Sweet Sorghum (Ukulinga)

3

LIECH

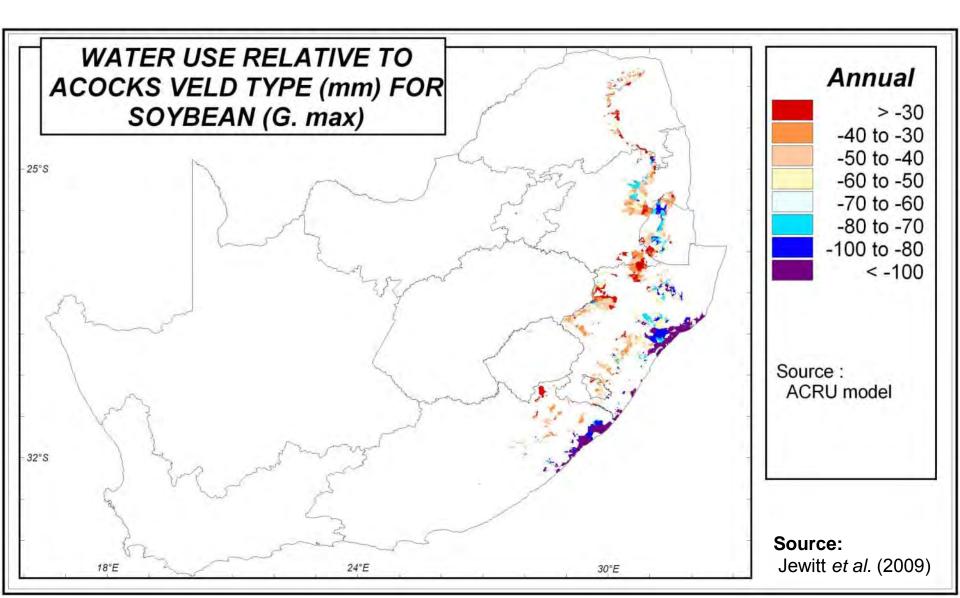
ZS-RVR

Sweet Sorghum (Hatfield)


Aims and Objectives

Identify suitable feedstocks for biofuel production in SA
Literature review & workshop identified potential feedstocks

- Map areas optimally suited to biofuel feedstock production
 - GIS-based study to apply optimum growth criteria to spatial data sets
- Determine the available knowledge on water use of feedstocks
 - Literature review and workshop
- Measure the water use and yield of potential feedstocks
 - Field trials conducted at Ukulinga (UKZN) and Hatfield (UP)
- Estimate the water use and yield of specific feedstocks
 - Simulation modelling using hydrological & crop yield models


Water Use = $MAR_{base} - MAR_{crop}$ in mm. Hence, $MAR_{crop} < MAR_{base}$

Sorghum uses more water than natural vegetation

Water Use = $MAR_{base} - MAR_{crop}$ in mm. Hence, $MAR_{crop} > MAR_{base}$

Soybean uses less water than natural vegetation

Approach

The development of an implementable GIS-based mapping and modelling framework to quantify the sustainable production potential of selected biofuel feedstocks under various environmental and social constraints

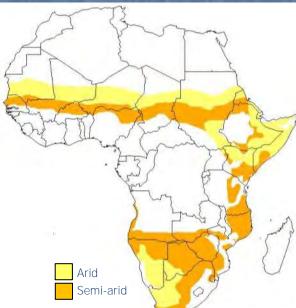
Mapping Component		Modelling Component		Constraints Component			
Identify areas optimally suited to biofuel production using climatic, edaphic, topographic and biotic factors limiting feedstock growth		Estimate the water use and yield of biofuel feedstocks using appropriate simulation models to determine the upper limit of biofuel production potential		Selection of various environmental and social constraints to "filter" out areas not suitable for the sustainable production of selected biofuel feedstocks			
Important Design Criteria							
Flexible framework to accommodate the inclusion of	a	-independent ind thus cable at both	Adaptable to changing legislation and policies that		Multi-criteria decision making approach to manage the		

other components (e.g. economics)

national and provincial level principally affect feedstock production

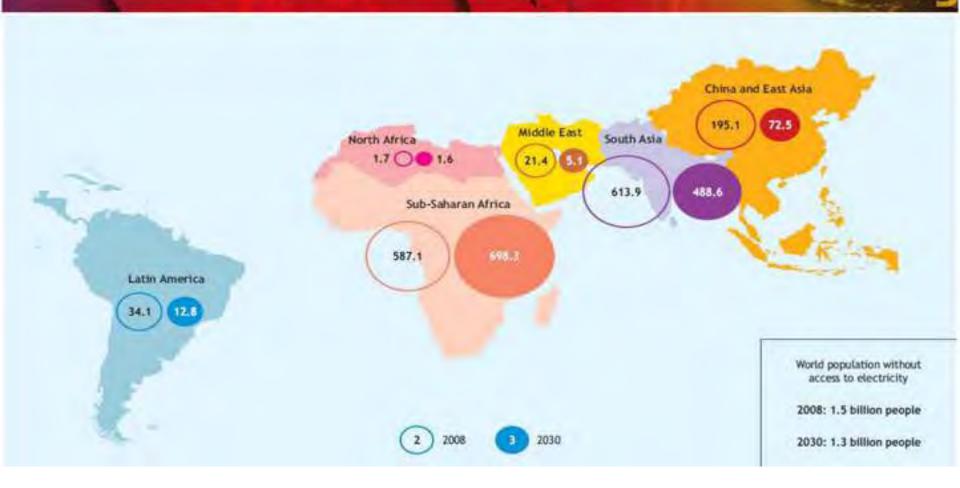
nanaye ind selection of "filtering" constraints

Other Studies


- Other bioenergy studies:
 - Gauteng Integrated Energy Strategy (GIES)
 - University of Johannesburg (Prof H Annegarn)
 - EnerKey Research Project (Dr L Eltrop, Stuttgart University)

COMPETE project:

- Main project objectives:
 - Stimulate bioenergy production in arid and semi-arid regions in Afric
 - Improve the quality of life of the rural population
 - Support the preservation of intact ecosystems
- For more information:
 - Website: <u>http://www.compete-bioafrica.net/</u>


DST Bioenergy Atlas:

- To be completed by September 2013
- Overlaps with biofuels project mapping work

World Energy Outlook

Number of people without access to electricity in the Reference Scenario (millions)

Sources: http://www.worldenergyoutlook.org/ http://www.iea.org/country/graphs/weo_2009/fig2-10.jpg